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ABSTRACT

This report presents a general method for predicting and bounding

casualties from both prompt and delayed effects produced by attacks against

population. The method contains analytic sub-models for distributions of

population and hardness and for nuclear weapons phenomenology. Relocation

schemes which evacuate people to locations where at least some people al-

ready reside are characterized abstractly and analyzed parametrically. The

general analytic results predict the dispersion/hardness needed to achieve

any specified outcome against any specified attack size and are used to

explore the relative influence of the ingredients of a passive defense sys-

tem.
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FOREWORD

This report completes the presentation of results obtained by La Jolla

Institute under Contract No. DCPAOI-79-C-0244. Mr. James Jacobs was the

FEMA technical monitor.
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1

SUMMARY

This report presents a general method for predicting and bounding

cabualties from both prompt and delayed effects produced by nuclear attacks

against population. We summarize the major findings and recommendations

as follows:

1. The feasibility of interrelating analytically the major ingredients

of damage/casualty prediction has been demonstrated by deriving tractable,

explicit analytic representations of the interplay among the characteristics

of the attack, targets, environment and outcome.

2. Our approach for determining the effective blast protection of a

population with mixed, non-uniform protection produces stable, consistent

values of protection hardness and accurate estimates of casualties.

3. Relocation schemes which evacuate a region's population to locations

where at least some people already reside have been characterized abstractly

and analyzed parametrically; in particular, the conditions for, and con-

sequences of, self-contained regional relocation have been determined.

4. It is highly unlikely that any realistic approach could relocate

the bulk of the nation's population at population density less than 1,000 to

1,500 people/mi2 , i.e., some 2 to 3 times the population density corresponding

to spreading the entire population uniformly over the entire populated area.I

5. To achieve moderate survivor fractions for attacks against popula-

tion with several thousand blast-equivalent megatons, significant blast

vii
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hardening is required, even with the most defense-optimistic assumptions

about relocation.

6. For attacks against population, the influence of delayed-effects

hardness is generally weak, compared to the influence of prompt-effects

hardness and dispersion.

7. In view of the results and conclusions presented above, we recommend

that

a) the demographics of residential population be analyzed to

explore the validity of the apparent universality of normalized rank-ordered

population distribution for different geographic regions and to provide a

basis for interpre .ig the rank-ordered population distribution in other

commonly used formats (e.g., in terms of political subdivisions)

b) the general analytic approach and results be extended, refined,

and applied, e.g., by considering attacks more general than attacks against

population, tighter bounds on combined-effects casualties, and specific candi-

date relocation schemes.

viii
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1. INTRODUCTION

This report completes the presentation of results obtained by La Jolla

Institute in a continuing investigation supported by Contracts No. DCPAOl-

73-C-0183 and DCPAOl-79-C-0244. Earlier results are presented elsewhere [Ref. 1)

and are summarized below as needed. The overriding objective of this effort

has been to interrelate analytically the major ingredients of damage/casualty

prediction by deriving tractable, explicit analytic expressions of the inter-

play among the characteristics of the attack, targets, environment and outcome.

In working toward this objective, we have put special emphasis upon nuclear

attacks against population and upon the civil defense measures of relocation

and hardening. The spirit of the investigation has been to seek not specific

numerical results but rather tractable analytic expressions and thereby to

understand parametric trends and to explore the meaningfulness, accuracy, and

sensitivity of the results. We have accordingly sought solutions for not only

the direct problem (i.e., predicting the outcome as a function of the parameters

characterizing the target, attack, and environment) but also for the inverse

problem of expressing any ingredient of the problem as a function of the others.

In particular, we have sought results which prescribe the hardening/dispersion

combinations sufficient to guarantee a specified outcome. Such results clearly

provide a rational basis for designing passive defense measures and for balancing

hardness and dispersion measures.



In Section 2 below, we begin by summarizing our general analytic results

(including solutions of the direct and inverse problems discussed above) and

their conceptual foundations. We then discuss a major element of each of the

two generic civil defense techniques of hardening and dispersion; specifically,

we present results for characterizing effective blast hardness and relocation

schemes which evacuate people to locations where at least some people already

reside. In closing Section 2, we illustrate the application of our general

analytic results by presenting a number of specific examples for prompt and

delayed casualties and for in-place and relocated populations. In Section 3,

we draw conclusions and make recommendations.
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2. STRUCTURE OF THE DAMAGE/CASUALTY PREDICTION PROBLEM

In this section, we summarize and illustrate our results concerning the

structure of the damage/casualty prediction problem.

2.1 Summary of Analytic Results

Unless otherwise noted, the results presented in this subsection

are derived in Ref. 1, frequently in considerably greater generality than

indicated below; for complete derivations of the results (including the range

of their validity), this reference should be consulted. We begin by recapitu-

lating the ingredients of the problem.

For an attack against population, the target is characterized by

its joint population/hardness distribution. The hardness is specified by

four parameters: the prompt-effects hardness by a single effective damage

overpressure, Aps 50 ; the delayed-effects (i.e., fallout) hardness by the

effective protection factor <p> (i.e., the attenuation of the free-field dose

by an indi'idual's surroundings) and by the mean, Deff,m , and standard devia-

tion, 0D, defining the "universal" Gaussian distribution of damage probability

vs. total equivalent biological dose to which an individual is exposed. (It

will be recalled that the pair [Deff,mOD) is customarily taken to be

[450R, 75R] and [250R, 50R] for fatalities and casualties, respectively.) The

spatial distribution of population is specified by the distribution, F, of

cumulative population, n, versus cumulative area, A, obtained by successively

subdividing the target region into rectangular cells, noting the population

3



and area of each cell, rank-ordering the cells by population density (i.e.,

by population divided by area), and summing over the rank-ordered cells. Thus

the population distribution (normalized by the total regional population, tot)

is given by

Rtot

where A* is a suitable normalizing area. The population density, u, is given by

d . Ctot (2)dA A* A*

From the construction of F, it is clear that the populatiun density (and hence

F') is positive and decreasing, so that the distribution F is convex. In sum,

then, the target is characterized by the four parameters specifing the hardness,

plus the two parameters atot and A* which, along with any parameters character-

izing the dimensionless distribution F, specify the spatial distribution of the

population.

An attack against population targets the first weapon against the most

populous cell and sequentially targets cells rank-ordered by population density.

To characterize an attack against population, it is clearly necessary to

specify the total number, N, and the burst height of the attacking weapons

and to specify the yield, Y, and fission fraction, F/Y, of the individual weapons.

(To avoid confusion with the symbol introduced in Equation 1 to describe the

normalized population distribution, we refer to the fission-yield exclusively

4



in the fission-fraction combination F/Y.) Since the effective damage over-

pressure is typically less than 10 psi and never exceeds tens of psi, it suffices

to consider two burst-heights: an airburst optimized for the damage overpressure

maximizes the prompt-effects damage but produces no fallout and hence no delayed-

effects damage; a surface burst maximizes the delayed-effects damage and produces

the same prompt-effects damage as any fallout-producing detonation. Therefore,

to complete the attack characterization, it suffices to specify either the number,

Ns, of surface bursts or the number, NAs of optimized airbursts, since

N = NA+NS (3)

In sum, then, the attack is characterized by four parameters: Y, F/Y, N, NS.

The environment for prompt-effects damage is characterized by the

ambient pressure, po, while the environment for delayed-effects damage is

characterized by the "effective fallout" wind, W, and cross-wind shear, SO

where, here and throughout this report, a symbol with underscore " " denotes

a vector quantity, while the same symbol without the underscore denotes the

magnitude of the vector. In our approach, by suitably formulating fallout

phenomenology and employing bounding arguments, we are able to finesse the

effects of W and Sc, and to obtain delayed-effects damage results. independent

of these parameters.

The outcome of the attack is characterized by the number of fatalities,

0fat' or casualties, ocas" In stating results, additional affixes have the

5



obvious interpretations: e.g., Qfat,prompt denotes the fatalities from prompt

effects while Qfat,comb denotes the fatalities from combined (i.e., prompt

plus delayed) effects. The outcome may equivalently be expressed in terms

of the survivor fraction e given by

Ufat£ = 1- tt (4)0 tot

The parameters intrQduced above characterize the ingredients of the

damage/casualty prediction problem. For attacks against population by con-

temporary nuclear weapon delivery systems, we find that these ingredients are

interrelated via

Qfat,prompt F ( [,s S50 S+(ls)s 2] F (5)

tot F - 50,A A*

afat'comb F ( A +.] (6)

Qtot < F A* [l 
(

where

2offense lower
T 1 for - conservative, i.e., bounds on fatalitiesdefense) upper

(7)
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VS = Ns/N (8)

/( )-3/5
S50,A = "A (Y/Po)/3 PsO 5 .022 (9)

o 3 [_ >1P50  /2 -2/3

S50,S oS (Y/p) + 0+3.18 = 0.776

(10)

I^

(11)

s 50 (12)

50,A 50,S

Imax o/Deff

T(SSOASS 2) 
(13)

"max = 0.4869 (14)

AO  L.0+O-2 63 J0 82  R-mi2  Y in Mt (15)

* D I (OD
Deff = eff,m L Deff,m (16)
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The parameters s50A and so0 s express the distance to which the

damage overpressure Aps,50 extends for an optimized airburst and for a surface

burst, respectively. The parameters Tmax and A arise from our formulation

of fallout phenomenology and, in particular, from our result that, for a single

detonation, the isodose area (i.e., the area within an isodose contour, or,

equivalently, the area within which a given dose is exceeded) corresponding to

a free-field dose D is given by

Ad A JAD. A (AD (17)

where

A = A (F/Y) (18)
0

and the normalizing area A is given by

A= HScWT2 (19)

and the parameters aH and T depend on yield only and can be well approximated

[Ref. 2] for yields in the megaton range as

H a (7.5 + 1.5 logl 0 Y]kft Y in Mt (20)

T = [7.5 + 1.66 log10 Y~hr Y in Mt (21)

8
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and the functions o and v are shown in Figure 1. As may be seen from Figure 1,

the parameter of Equation 14 is indeed the maximum value of the function ', i.e.,

= 0.4869 = T(w=w*=0.6834) (22)

By selecting aim-points at (or above) the center of the N most densely

populated cells, an attack with N weapons is guaranteed to achieve the prompt-

effects fatalities given by Equation 5, with T=2. Conversely, an attack with

N weapons cannot achieve greater prompt-effects fatalities than those given by

Equation 5, with r=Tr. Therefore, the actual number of prompt-effects fatalities

is given by Equation 5 for some value of T between 2 and 7; moreover, the

values of 2 and w for T provide the bounds indicated by Equation 7. It is

clear that an attack employing airbursts exclusively (i.e., vs=O) is feasible

and maximizes the prompt-effects fatalities. The upper-bound on combined fatali-

ties as expressed by Equation 6 is derived by upper bounding the size and pop-

ulation of the fallout region; although lower bounds or alternative upper bounds

could also be derived, the result expressed by Equation 6 is especially powerful,

as we describe below; here, and throughout this report, we follow the convention

that "Equation _ is a name for a mathematical relationship which may, but need

not be, an equality.

It is clear that by presenting the outcome as an explicit analytic

function of the problem's other ingredients, Equations 5 and 6 solve the "direct"

problem discussed above. Moreover, the solution of the inverse problem is

readily inferred. Specifically, Equation 5 immediately implies the equivalent

9
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blast yield NY2/3 (popularly described as "equivalent megatons") needed to

achieve a specific outcome against a specific target. Likewise, the combina-

tion of dispersion and prompt-effects hardness to achieve a specified outcome

is given by

A____6/52( (1-C) T>
(- p / Acum < fA(YPoI 23

where

A cum(Z) = A*F-(z) = most densely populated area

containing fraction z of total popu-

lation, O<z<l (24)

Clearly any joint hardness/dispersion distribution satisfying Equation 23

guarantees the specified outcome (i.e., prompt-effects survivors) against the

specified attack. If either the hardness or the spatial distribution of the

population is specified independently, then the other parameter is readily

inferred from Equation 23.

From Equation 6, it is clear that the combined (prompt plus delayed)

fatalities from a mixed surface/airburst attack cannot exceed the combined

(exclusively prompt) fatalities from a pure airburst attack if O.is negative;

from Equations 11 and 13, the condition that o be negative is equivalent to

the condition

11



T~ Ah/D*<P> ^ max o eff (25)
F/Y >  T 2 s 2

T(S50,A - 50,S )

From Equations 9, 10 and 15 (and the fact that the denominator in Equation 15

exhibits negligible variation with yield), it is clear that the parameter 1P*

depends only on Aps,50 and Y with the yield dependence given by

SY/3 (26)

Since the yield of contemporary strategic weapons lies within a factor of 33

about one megaton (i.e., between 37 kt and 27 Mt), p* varies with yield by

at most a factor of 3. Moreover, for attacks which produce the same prompt-

effects damage and which therefore have the same blast-equivalent yield

NY2/3, it follows from Equation 26 that

* N for constant NY2/3  (27)

The significance of Equations 6 and 25 lies in the fact that radiation

shielding sufficient to satisfy Equation 25 accomplishes as much as any amount

of shielding can accomplish--in the sense that any additional shielding can

be obviated by the offense's simply raising the burst height and thereby pro-

ducing greater casualties. The critical value of shielding (as characterized

by the attenuation <p> or protection factor PF) depends only on yield (as Yl/ 3)

12



and on the damage overpressure and is completely independent of all the other

variable ingredients of the problem--independent of how the population is

distributed in an absolute sense, independent of how the population is distributed

in a rank-ordered sense, independent of the size of the attack, independent of

where the detonations occur, independent of what the winds and weather are,

independent of what the number of fatalities is.

An approach to selecting performance criteria for passive defense

emerges naturally from the results presented above: first the-dispersion and

prompt-effects hardness are prescribed by Equation 23, then the delayed-effects

hardness (corresponding to the prescribed prompt-effects hardness) is given

by Equation 25. In this approach, the required dispersion and prompt-effects

hardness depend upon the desired outcome and upon the size of the attack,

while the delayed-effects hardness depends significantly upon only the prompt-

effects hardness. Delayed-effects hardness better than that prescribed by

Equation 25 may reduce casualties from some attacks, but obviously cannot

possibly reduce casualties from the pure-airburst attack. Moreover, if the

delayed-effects hardness satisfies Equation 25, then even if the attack size

increases beyond the design level, it remains true that no attack can produce

more casualties from combined effects than those produced by prompt-effects

from a pure airburst attack--even though the latter casualties increase.

In the results presented above, the target hardness which can be modi-

fied by civil defense efforts is represented by two parameters: Aps, 50 and <a>.

In reality, the protection of the entire population does not possess a single homo-

geneous hardness for prompt or delayed effects, but can be decomposed into a

13
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finite number of (mutually exclusive and cumulatively exhaustive) classes

of homogeneous hardness. Given the latter more realistic and finc-grained

distribution of hardness, it is possible (as shown in Ref. 1) to define an

equivalent uniform hardness so that Equations 5 and 6 and their implications

remain valid. For example, if there are M exposure environments for delayed

effects, with each individual such environment characterized by the protec-

tion factor pj and containing the fraction 8j of the total population, then

M

<p> j=l 
(

Similarly, if each exposure environment for prompt effects contains fraction

aj of the total population and is characterized by the damage overpressure

&Ps,50,j, then an analogous (but slightly more complicated) expression gives

the equivalent uniform hardness Aps,50 in terms of all the aj and Aps,50j;

we discuss and illustrate this expression in Section 2.2 below.

Dispersion, the other target property which appears in the results

presented above and which can be modified by civil defense efforts, is repre-

sented by the rank-ordered distribution F and its inverse. It is clear that

any physically realizable spatial distribution of population determines a

unique rank-ordered F; the same rank-ordered F could (in principle, if not in

practice) arise from different spatial distributions of population. The

14



distribution of residential (i.e., "in-place") population is the single most

important distribution, both for its own sake and as a starting-point for

relocated distributions. By analyzing the residential population of the entire

nation and of three sub-regions (consisting of a 12-state Northeastern complex,

a 4-state Midwestern complex, and the single state of California, respectively),

we find [Ref. 1] that the residential population of each of these regions

determines a rank-ordered distribution which is well represented by F=F where0

F (w) = l-e-w  = 0.63 (29)

The Northeastern complex consists of Connecticut, Delaware, District of Columbia,

Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania,

Rhode Island, and Vermont; the Midwestern region consists of Illinois, Indiana,

Michigan and Ohio. Moreover, we find that the total populated area of each

region is well approximated as lOA*. Consequently, different regions share the

same normalized rank-ordered distribution of residential population and differ

only in the amount of unpopulated area and, of course, in the absolute scale of

the distribution as reflected in Rtot and A*. In Section 2.3 below, we analyze

the implications of these results for relocation schemes which evacuate people

to locations where at least some people already reside.

While the preceding summary of analytic results is a complete state-

ment of the results quoted and occasionally suggests the derivation thereof,

a more coherent presentation of their derivation may be desired. To this end,

we now present an overview (adapted from Ref. 1) of their conceptual foinda-

tion. For additional details, the reader should consult the complete reference

15



which provides a precise statement of the damage/casualty prediction problem

for arbitrary targeting by the attacker and, for attacks against population,

presents a general method for predicting and bounding casualties from both

prompt and delayed effects.

A precise and rigorous statement of the damage/casualty prediction

problem results from adopting the conceptual framework wherein targets are

susceptible in a finite number of damage levels to a finite number of different

"loading" types and are found in a finite number of mutually exclusive exposure

environments, with each exposure environment characterized, for each damage

level, by its susceptibility to each of the loadings. A specific damage/

casualty prediction technique is essentially defined by its treatment of eight

critical characteristics. We illustrate this viewpoint by describing in

explicit detail how each of these eight characteristics is treated in four

specific techniques which are in current use and which collectively span the

range of diversity, complexity, and detail to be found in contemporary approaches.

To introduce the elements of the original approach presented here

and to lay the foundation for the general method developed here, we orqanize

the discussion around the eight critical characteristics discussed 3bove.

These methodological auxiliaries to the major results show that

a) a step-function ("cookie-cutter") is a valid representation of

prompt-effects damage probability; this result is derived by theoretical argu-

ments and verified by comparison with detailed numerical results

b) damage degradation due to delivery system inaccuracy is negli-

gible for the range of targets and attacks considered here; this result
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emerges, in the limit, from a general analysis which demonstrates that prob-

ability of damage to point and area targets depends on at most two over-

pressures (characterizing the offense and defense, respectively) and is tightly

bounded by prescribing merely the ratio of these two characteristic over-

pressures

c) the probabilistic nature of casualty prediction does not intro-

duce significant uncertainty into the predictions

d) for fallout-producing detonations, the magnitude and location

of the maximum dose and the variation thereof with wind can be expressed in

tractable analytic terms, valid for all physically realistic winds; these

results are derived from the general WSEG-1O fallout phenomenology

e) the area within isodose contours from fallout-producing detona-

tions can be expressed in simple analytic terms and upper-bounded independently

of wind structure; this result follows from reformulating WSEG-1O fallout

phenomenology in a dimensionless form which provides "universal" isodose

contours

f) the normalized distribution of residential population (rank-

ordered by population density) versus cumulative area occupied by that popu-

lation is essentially the same for the regions analyzed (i.e., the continental

United States, a 12-state Northeastern region, a 4-four state Midwestern region,

California) and is described by a simple analytic expression; preliminary

results indicate that in all regions, the entire populated area is approximately

twenty times the area containing the most densley populated half of the total

17



population and, consequently, that regions differ in the amount of unpopulated

area which they contain, but do not differ in the way in which populated area

is filled.

Because different geographic regions appear to share the same normal-

ized rank-ordered distribution of residential population, relocation strategies

which evacuate people to locations where at least some people already reside

are more nearly similar than dissimilar for different regions; considerations

of relocation on a national scale may require that different parametric ranges

of the common normalized distribution be emphasized in different geographic

regions.

The application of our general approach for predicting prompt-effects

casualties to 40 specific families of attacks (corresponding to every combina-

tion of four geographic regions, two burst-heights, and five aim-point spacings)

against residential population has

a) produced numerical results wherein the joint population/hardness

distribution is represented with the most fine-grained detail available and

with the greatest defense optimism (i.e., "best available shelter")

b) corroborated analytic simplifications in the general approach

whereby arbitrary joint population/hardness distributions are successively

reduced to the more tractable distributions of multiple-uniform-hardness and

of single effective uniform hardness

Our general analytic results predict

18
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a) significant dispersion/hardness are needed to achieve moderate

levels of prompt-effects survivors from attacks against population by a few

thousands of megaton-size weapons

b) modest amounts of radiation shielding suffice to guarantee that

no attack against population can produce more casualties by blast and fallout

combined than the casualties produced by blast alone from the same number of

optimized airbursts--regardless of the spatial distribution of the population,

regardless of the size and location of the attack, regardless of the wind and

weather, regardless of the number of casualties

c) both accurate numerical values and generalized scaling laws to

understand trends, sensitivites, regularities.

Having indicated the origin of the analytic results presented above,

we now turn to extending and applying these results.

2.2 Effective Prompt-Effects Hardness.

We now consider the realistic situation wherein there are M (mutually

exclusive and collectively exhaustive) exposure environments for prompt effects,

with each such environment characterized by its damage overpressure, LPs,50,

and containing the fraction aj ofthe total population, 1jsM; we take the

exposure environments to be ordered in terms of increasing damage overpressure

so that exposure environments I and M are the "softest" and "hardest", respec-

tively. The damage distance s50,j is related to the damage overpressure

LPs,50,j via Equations 9 and 10 for optimized airbursts and surface bursts,
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respectively. Since our intent is to explore the notion of effective blast

hardness, we restrict attention in this subsection to prompt-effects casualties.

By rank-ordering cells of characteristic (center-to-corner) size

s and selecting aim-points at or above the centers of the N most densely

populated cells, an attack with N weapons produces prompt-effects fatalities

given by

4 ~ 2 M 5~ ~\ -2)(M'r ) [ (____Vs) =<Q>F TA*- !jK!')] F (ts (30)
j=1

where the population-weighted coverage coefficient <Q> is given the obvious

definition in terms of the coverage coefficient Q given by

(iT/2) w2  0as 2 1/2

Q(w) w2 [u + arc cos u) 2- 1/2w<l (31)

l <w<CM

u 2 2  (32)

It is clear that Q(w) is an increasing function of w and consequently that

<Q> in Equation 30 is a decreasing function of s; F in (3) is, of course, an

increasing function of s. Considered as a function of s, V(s) has (as shown

20



in Ref. 1) for s between s50,M and 21/ 2s 50 a unique global maximum at, say,

s*. The effective damage distance and damage overpressure are given by

M

Ss - 1 s* QQ1  5, (33)

APs,50 = APs(s50) (34)

In terms of these effective values, we take the prompt-effects fatalities to

be given (as in Equation 5 above) by

1fat = F ) (35)
ntot A*

In general, the effective hardness defined by Equations 33 and 34 depends on

N and F. We show below that this dependence is weak. Moreover, we show that

Equation 35 underestimates the "exact" maximum V(s=s*) by a negligibly small

amount and therefore that the combination of Equations 33, 34 and 35 provides

a valid representation of effective hardness and casualties for a non-uniform

population.

Before investigating more complicated situations, we discuss the

simplest case, where M = 1, i.e., there is but a single uniform hardness.

It is clear from Equations 33 and 34 that our general approach specializes
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correctly in this case to the given single hardness. Nevertheless it is

instructive to explore the variation of s* and V(s*). For concreteness (and

without any real loss of generality), in this and all other cases discussed

in this subsection, we restrict attention to surface bursts and to the distri-

bution F=F 0 which is given by Equation 29 and which accurately represents

American residential population. Our results are summarized in Tables 1 and

2 and plotted in Figures 2 and 3. We see that as 2Ns 2/A* increases, s*/s50

decreases steadily from 1.3502 toward 1 and that the ratio of V(s*) to

* 2F(TNs5 /A*) decreases steadily from 1.2289 toward 1. However, the difference

between these two estimates of fatalities rises to a maximum of 0.0487 for

2
TNs5 /A* = 0.433 and then decreases steadily. The "exact" maximum at s* greater

than s50 corresponds, of course, to targeting for an overpressure somewhat

less than APs,50 and accepting a smaller fraction of fatalities per cell in

return for targeting cells with a greater total area. The approximation

(underestimation of the "exact" maximum) embodied (via Equations 33 and 34)

in Equation 35 never significantly underestimates the number of fatalities and

may legitimately be interpreted as enlarging the region in parameter-space

wherein the approximations underlying Equation 35 are valid.

To illustrate the more general case of multiple exposure environ-

ments, we consider three examples wherein the damage overpressures APs, 50 ,j

are the same but the occupancy fractions aj are different. Specifically, we

consider M=4 exposure environments with j = 1,2,3,4 corresponding to damage
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Table 1

Location and Magnitude of Exact Maximum of Prompt
Fatalities - Single Exposure Environment

2~~A S*/S s 55/s* Q(ss) F(TNs* /A*) V(~~

10-6 1.3502 0.7406 0.8418 2.422x10-4  2.039x10-4

10- 1.3501 0.7407 0.8419 1.033x10-3  8.696x10-4

10-4 1.3497 0.7409 0.8422 4.397xl10 3  3.703x10 3

103 1.3481 0.7418 0.8435 0.0186 0.0157

10- 2 1.3409 0.7458 0.8491 0.0764 0.0649

0.1 1.3093 0.7638 0.8724 0.2805 0.2447

0.2 1.2865 0.7773 0.8881 0.3925 0.3485

0.3 1.2682 0.7885 0.9001 0.4684 0.4216

0.4 1.2526 0.7983 0.9099 0.5256 0.4782

0.5 1.2390 0.8071 0.9182 0.5711 0.5243

0.6 1.2268 0.8152 0.9253 0.6085 0.5630

0.7 1.2158 0.8225 0.9315 0.6400 0.5962

0.8 1.2057 0.8294 0.9369 0.6671 0.6250

0.9 1.1966 0.8357 0.9418 0.6906 0.6504

1.0 1.1881 0.8417 0.9461 0.7114 0.6730

1.5 1.1539 0.8666 0.9623 0.7870 0.7573

2.0 1.1288 0.8859 0.9727 0.8352 0.8124

3.0 1.0942 0.9139 0.9847 0.8933 0.8796

4.0 0.0713 0.9335 0.9909 0.9266 0.9182

5.0 0.0552 0.9477 0.9944 0.9476 0.9423

6.0 1.0434 0.9584 0.9965 0.9617 0.9583

7.0 1.0345 0.9666 0.9977 0.9715 0.9693

8.0 1.0277 0.9730 0.9985 0.9784 0.9770
9.0 1.0224 0.9781 0.9990 0.9835 0.9826

10.0 1.0182 0.9821 0.9994 0.9873 0.9866
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Table 2

Comparison of Exact and Approximate Values of Maximum Prompt
Fatalities - Single Exposure Environment

2 2-. v (s=s*)
TNs 50/A* F(TNs 50/A*) (~*

550v(s=s*) 22F(TNs. /A*) -F(TNs 50/A*
10-6 1.659x10 4  2.039xl0 "4  1.2289 3.80x10 5

10"5 7.077xlO 4  8.696xi0 "4  1.2288 2.619xi0-4I04 3.015xlO- 3  3.703xi0 "3  1.2281 6.878xi0 -4

10-4 0.0153 0.0649 1.2281 0.0029

lo- 0.0128 0.0157 1.2252 0.0029
lo 2  0.0535 0.0649 1.2139 0.0114
0.1 0.2090 0.2447 1.1710 0.0357
0.2 0.3043 0.3485 1.1455 0.0443

0.3 0.3740 0.4216 1.1273 0.0476
0.4 0.4296 0.4782 1.1132 0.0486

0.5 0.4760 0.5243 1.1016 0.0484
0.6 0.5156 0.5630 1.0920 0.0474
0.7 0.5501 0.5962 1.0837 0.0460
0.8 0.5806 0.6250 1.0765 0.0444
0.9 0.6077 0.6504 j.0703 0.0427
1.0 0.6321 0.6730 1.0647 0.0409
1.5 0.7250 0.7573 1.0445 0.0323
2.0 0.7872 0.8124 1.0319 0.0251

3.0 0.8644 0.8796 1.0176 0.0152
4.0 0.9088 0.9182 1.0103 0.0094
5.0 0.9365 0.9423 1.0063 0.0059
6.0 0.9546 0.9583 1.0039 0.0037.
7.0 0.9669 0.9693 1.0025 0.0024
8.0 0.9754 0.9770 1.0016 0.0016
9.0 0.9815 0.9826 1.0010 0.0010
10.0 0.9860 0.9866 1.0007 0.0007

2
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overpressures of 5, 8, 10 and 35 psi, respectively, and hence to DCPA shelter

types G/H/I, E/F, B/C/D, and A, respectively. (For a discussion of DCPA

shelter types, cf. Ref. 3.) For the Y = 1 Mt surface bursts considered here,

the damage distances s50 , are 2.869, 2.216, 1.969 and 1.076 mi for j = 1,2,3,4

respectively; here, and throughout this report, "mile" denotas a statute mile

of 5280 ft = 1.6093 km. The occupancy fractions are selected from the twenty

combinations of four regions (Nation, Northeast, Midwest, California) and five

cell sizes (length of cell side corresponding to 1, 2, 4, 6, 15 min.) studied

earlier (cf. Table 8, Ref. 1). For each of these 20 combinations, the resi-

dential population within each cell is located in the best (i.e., highest

damage overpressure) shelter available in the cell so that, in each cell,

first the 35-psi shelters are filled to capacity, then the 10-psi shelters,

etc.; it is assumed that everyone is located in a shelter of at least 5 psi

damage overpressure. The three particular sets of occupancy fractions dis-

cussed here correspond to (California, 1 min. cell), (Nation, 2 min. cell)

and (Northeast, 15 min. cell) and are chosen to represent "soft", "nominal",

and "hard" postures, respectively. Although these three examples are not

indicative of "softness" or "hardness" in an absolute sense, they are the

extremes of the 20 cases studied and doubtless do bracket the hardness of

national residential population in "best available shelter". For descriptive

simplicity throughout this subsection, we continue to refer to them as "soft",

"nominal" and "hard". The numerical characterization of the three examples

is given in Table 3. It must be emphasized that the tabulated occupancy

fractions serve here to characterize the three postures considered, and are

not restricted to specific regions or cell sizes.
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Tabl e 3

Characterization of Three Hardness Postures
Multiple Exposure Environments

cj for

Soft Nominal Hard
_ _ Ps,50,j psi s50,j mi. Posture Posture Posture

1 5 2.869 0.6884 0.3471 0.0073

2 8 2.216 0.0453 0.0320 0.0073

3 10 1.969 0.2537 0.5984 0.9221

4 35 1.076 0.0126 0.0225 0.0633

For these three examples, we now present numerical results obtained

by specializing Equation 30 for T=
2 and Equations 1 and 29 for A* = 4xlO 4 mi2

corresponding, respectively, to offense-conservative results for the entire

nation. The behavior of V(s) as a function of cell size is illustrated in Table 4

Table 4

V(s) for Nominal Hardness Posture and Several Values of s and N
N=

smi1 30 102 3xl10 2  10~ 3--- -31 03  104

1 0.0159 0.0336 0.0661 0.1358 0.2530 0.4635
1.5 0.0262 0.0552 0.1072 0.2150 0.3833 0.6429
2 0.0372 0.0777 0.1491 0.2913 0.4963 0.7652
2.5 0.0458 0.0949 0.1800 0.3421 0.5570 .0.7948
3 0.0485 0.0999 0.1868 0.3454 0.5380 0.7171
3.5 0.0481 0.0984 0.1816 0.3264 0.4871 0.6122
4 0.0461 0.0936 0.1704 0.2979 0.4267 0.5105
4.5 0.0421 0.0847 0.1520 0.2584 0.3562 0.4093
5 0.0386 0.0771 0.1365 0.2258 0.3002 0.3339
5.5 0.0357 0.0707 0.1234 0.1987 0.2555 0.2771
6 0.0332 0.0653 0.1123 0.1760 0.2196 0.2334
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and Figure 4 which list and plot, respectively, the magnitude of V(s) as a

function of s for the nominal hardness posture and for several values of N.

We see that, for each values of N, V(s) rises to a maximum and then decreases

as s increases. For each of the three hardness postures and for several values

of N, we have determined the location, s*, and magnitude, V(s*), of this maxi-

mum; the results are displayed in Table 5. Having determined s*, we invoke

Equation 33 to find s and F(TNs50/A*), with the results shown in Table 6.

We note that as the attack size increases, then s* decreases steadily, s50/s*

increases (i.e., s*/so decreases) steadily toward 1, and s5 decreases steadily,

but relatively slowly; the relative variation in s is three to five times

less than that of s*. As N increases, the difference between the "exact" maxi-

mum V(s*) and F(TNs5/A * ) increases to a maximum and then decreases steadily;

the maximum value of this difference is relatively small (less than five per-

cent). For the most part, this behavior is precisely that demonstrated earlier

for the case of single uniform hardness. These results are depicted in Figures

5, 7, and 9 which present s* and s50 versus N for the soft, nominal, and hard

postures, respectively, and in Figures 6, 8 and 10 which present V(s*) and

F(tNs52/A*) in like fashion.

Having determined the damage distance s50' we obtain the corresponding

damage overpressure from Equation 34. In Table 7, we summarize the results for

s50 and Aps, 50 for all three hardness postures and for several values of N;

these results for s50 and Aps, 50 are plotted in Figures 11 and 12, respectively.
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Table 5

Location and Magnitude of V(s*) for Three Hardness Postures

Posture N s*,mi. <Q,(s=s*) F(TNs*2/A*) V(s=s*)

Soft 30 3.731 0.7426 0.0808 0.0600

1O2  3.679 0.7549 0.1619 0.1222

3xO 2  3.582 0.7777 0.2891 0.2248

1O3  3.372 0.8244 0.4909 0.4047

3xO 3  3.085 0.8828 0.7006 0.6185

104  2.704 0.9425 0.8870 0.8360

Nominal 30 3.119 0.7469 0.0650 0.0485

102  3.022 0.7757 0.1288 0.0999

3xO 2  2.784 0.8517 0.2200 0.1873

v 10 2.759 0.8598 0.4080 0.3508

3xO 3  2.648 0.8895 0.6302 0.5606

lO4  2.375 0.9466 0.8431 0.7981

Hard 30 2.647 0.8114 0.0532 0.0431

1O2 2.632 0.8170 0.1094 0.0893

3xO 2  2.603 0.8275 0.2040 0.1688

103  2.536 0.8504 0.3760 0.3197

3xO 3  2.419 0.8866 0.5883 0.5216

104  2.222 0.9351 0.8178 0.7647
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Table 6

Effective Damage Distance and Casualties for Three Hardness Postures

Posture N s*,mi. So/S* s 50 'mi. F(trNs /A*)

Soft 30 3.731 0.6876 2.566 0.0512 d

1O2 3.679 0.6932 2.551 0.1054

3xO 2  3.582 0.7036 2.520 0.1967

103 3.372 0.7290 2.458 0.3645

3xO 3  3.085 0.7726 2.384 0.5816

104 2.704 0.8367 2.262 0.8248

Nominal 30 3.119 0.6896 2.151 0.0412

1O2  3.022 0.7027 2.123 0.0846 q
3xO 2  2.784 0.7477 2.082 0.1582

103  2.759 0.7538 2.079 0.3073

3xO 3  2.648 0.7786 2.06.2 0.5161

10 2.375 0.8423 2.001 0.7750 U

Hard 30 2.647 0.7211 1.909 0.0355

102  2.632 0.7244 1.906 0.0742

3xlO2  2.603 0.7310 1.903 0.1425

1O3  2.536 0.7467 1.894 0.2785

3xO 3  2.419 0.7760 1.877 0.4752

lO4  2.222 0.8270 1.837 0.7382
C
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Table 7

Effective Damage Distance and Overpressure for Three Hardness Postures

Ns 50mi', for AP s50' Ps' for
Soft Nomi nal Hard Soft Nominal Hard

Posture Posture Posture Posture Posture Posture

30 2.566 2.151 1.909 6.11 8.46 10.63

1O2 2.551 2.123 1.906 6.18 8.67 10.65

3xlO2  2.520 2.082 1.903 6.31 9.00 10.69
1O3  2.458 2.079 1.894 6.60 9.02 10.79

3xlO 3  2.384 2.062 1.877 6.99 9.16 10.97

10 2.262 2.001 1.837 7.70 9.71 11.44

-n
Since Aps - S with n = 2 for this range of overpressures, the variation of

damage overpressure is approximately twice that of the damage distance. How-

ever, the variation of both is relatively small. For distributions which

are flatter than the distribution F = F employed here, the variation is even

less. We have shown (cf. Ref. 1) that a defense-conservative upper bound on

s is obtained by taking

S 50 eff lim j s J50' (36)

Substitution of values from Table 3 into Equation 36 gives s50 = 2.625 mi.,

2.316 mi. and 1.936 mi. for the soft, nominal, and hard postures considered
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here, with corresponding values for Ap s,50 of 5.9 psi, 7.4 psi, and 10.3 psi,

respectively. Comparison of these values with those tabulated in Table 7

shows that Equation 36 provides a rather good approximation to s50 and hence

to LPs,50. For many applications requiring a defense-conservative estimate,

the simplicity of Equation 36 in determining s and Aps,50 outweighs the

loss in accuracy.

In sum, we have shown above that our prescription (embodied in

Equations 33, 34, 35) for prompt-effects hardness and casualties produces

stable, relatively invariant values of effective hardness and approximates

closely the "exact" maximum number of casualties achievable.

2.3 Parametric Characterization of Relocation

It is clear, from both common sense and from the precise results of

Equation 23, that passive defense measures are perforce combinations of the

generic techniques of hardening and dispersion. We have discussed above the

characterization of hardness, and now turn to considering dispersion. Special

interest attaches to relocation schemes wherein people are evacuated to loca-

tions where at least some people already reside. In this subsection we pre-

sent a parametric characterization of such relocation policies. We first

present results for relocation within a single region and then in view of

these results, consider nationwide relocation with "self-contained" relocation

of individual regions.
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Our discussion of relocation is couched in terms of the distributions

(rank-ordered by population density and presenting cumulative population versus

cumulative area) defined by the spatial distributions of population before

and after relocation. Unless otherwise noted, we take the rank-ordered distri-

bution of residential (i.e., pre-relocation) population in each region to be

given by Equations 1 and 29 (i.e., by F = F with X = 0.63) with Aoc c = lOA*;

thus each region is characterized by its total population, Qtot' and charac-

teristic area, A*. Since F (10) = 0.986, use of F with Aocc = 10 A* implies

that 1.4 percent of the population lives "outside the populated area". Al-

though this fact is clearly not truly meaningful, it suggests that some caution

must be exercised in defining relocated populations in terms of F . We adopt

the convention that only the lOA* region containing F (10) = 98.6 percent of

the total population is a candidate for receiving evacuees. Moreover, we

recognize, within the populated area, three regions corresponding to decreasing

ranges of population density for residential population: evacuation region,

from which at least some, and generally most, people are relocated; buffer

region, neither into nor out of which relocation occurs; potential-host

region, i.e., the populated area remainder which is a candidate for receiving

evacuees. We distinguish between the potential-host region, so defined, and

the host region, which is the region which actually receives evacuees; if

the two regions coincide, then the hosting is said to be complete.

Relocation reduces vulnerability insofar as the rank-ordered distri-

bution corresponding to the relocated population is flatter than the
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original distribution. The population density is lessened in the evacuation

region, is unchanged in the buffer region, and necessarily is increased in

the host region. Hence the key to achieving a relatively flat distribution

for the relocated population is control of the post-relocation population

density within the host region. We therefore consider relocation schemes

wherein the population density in the host region is constrained not to exceed

a prescribed value, w*. A further, pragmatic restriction arises from the

finite capacity of the host region to accomodate evacuees; an index of this

restriction is the hosting-ratio K defined, for any portion of the host

* region, by

pfi
= population after receiving evacuees (37)population before receiving evacuees

We consider relocation schemes wherein the hosting-ratio in the host region

is constrained not to exceed a prescribed value, K*.

We now summarize the resulting definition of relocation schemes

which evacuate people to locations where at least some people already reside:

i) the evacuation region consists of the most densely populated area of A,

and the fraction y of the population of the evacuation region is relocated;

ii) the buffer region consists of the locations where the residential popu-

lation density is less than in the evacuation region, but greater than w*;
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iii) within the potential-host region, the locations with the highest

residential population density receive as many evacuees as possible, subject

to the constraints that the population density after relocation not exceed

W* and that the hosting ratio not exceed K*. The buffer region is repre-

sented before relocation by the portion of F = F extending from A = A to^ 0

A A where, in view of Equation 2,

tot F1 ) * (38)
A* (L

Likewise, the potential-host region is represented before relocation by two

portions of F = F extending from A = A to A and from A = A to A = lOA*,
0

respectively, where A is given by

tot (A,*

A* F1A )- (39)

Clearly, the portion extending from A to A is limited, after relocation, by

the constraint that the population density not exceed w*, while the portion
;"S

extending from A to IOA* is limited by the constraint that the hosting-ratio

not exceed K*. (Ref. 1 illustrates this generic relocation scheme in a single

specific example characterized by taking-the region to be the entire nation,

I.OA*, y = 0.8, w* 10 people/mi2 , K*= 7; the resulting relocated

distribution is denoted F con)
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For a given w* and K*, the potential-host region has a maximum

hosting capacity (i.e., excess of population which can be contained over and

above the residential population). This maximum capacity occurs for complete

hosting and is given by

capacity = w*[A-A] + [F(lO)-F

Q~ F(l)-F() (40)

In dimensionless form we have this capacity (normalized by total population)

as r where, from Equations 38, 39, 40

r F1 ( A*I 4c+ ~*Fl) A*)J

- Fdo)-F ( L)] (41)

In view of Equations 38 and 39, we also have

r * I *F'("')[ - ]+ F(l0)-F ( -)A F(lo)-F (LA*) (42)

The hosting demand (i.e., the additional population to be relocated within

the host region) is, of course, simply the number of evacuees. In dimensionless

46

0



terms, the demand (normalized by total population) is denoted S and given

by

S = y F(-) (43)

In order for the relocation to be feasible, the hosting capacity must exceed

the hosting demand, i.e.,

r> S (44)

We now investigate the conditions for which this fundamental in-

equality is satisfied. We restrict attention to relocations for which there

is no buffer region, so that A = A; this serves both to reduce the already

large number of parameters and to create the maximum possible hosting demand.

(The results presented below are readily extended to include a finite buffer

region; specific buffer regions considered in the past are difficult to

characterize in intrinsic terms, but generally have relatively small total

population.) Our approach is to characterize relocations with complete

hosting; the resulting post-relocation rank-ordered distributions are denoted

by G (to avoid confusion with the pre-relocation distribution F = Fo).
0

We proceed by first determining the minimum permissible w* for

given K* and y. Determining this minimum permissible * is equivalent (via
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Equation 38) to determining the maximum permissible A and hence is equivalent

(via Equation 39) to determining the maximum permissible A. Of the various

alternative ways to achieve these equivalent ends, perhaps the simplest is

interpreted as an iterative procedure (with convergence guaranteed by the

fact that the procedure is demonstrably equivalent to inverting a monotonic

function) wherein one i) picks a value of A, ii) thereby determines A since

Equations 38 and 39 imply that

F(A)-* F (L~ (45)A*) A*)

iii) thereby determines r from Equation 41 or 42, iv) compares r with S deter-
A

mined from Equation 43 with A = A, v) iterates to obtain r = S. We denote

the results in terms of the parameters a and a which give the maximum per-

missible values of A and A via

a maximum permissible A (46)= ~A* (6

= maximum permissible A
A* (47)

It obviously follows that

^r

minimum.permissible w* = F'(a) = K* ot () (48)
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The results are summarized in Tables 8 and 9 and Figures 13, 14,

and 15. Tables 8 and 9 list critical values of hosting parameters (e.g.,

a, a, and functions thereof) as functions of K* for y = 1.0 and 0.8, i.e.,

for 100 percent and 80 percent evacuation, respectively. Figures 13 plots

the minimum permissible hosting population density w* as a function of K*

for y = 1.0 and 0.8; alternatively, Figure 13 depicts the boundary in popu-

lation-density/hosting-ratio space between feasible and infeasible relocations.

In like fashion, Figures 14 and 15 present the variation with K* of the maxi-

mum evacuated population, yF(a), and maximum evacuation area, a, respectively;

these Figures may also be interpreted as defining boundaries in the appropriate

parameter space. We note the results that, for K* = 7, then the minimum per-

missible hosting population density w* is 0.1741 stot/A* and 0.1433 %tot/A*

for y= 1.0 and -= 0.8, respectively; the analogous values of maximum evacuated

population are 0.6945 Qtot and 0.5860 1tot' while the analogous values of

maximum evacuated area are 1.3106 A* and 1.5511 A*, respectively. We further

note the consequence that for y - 0.8 and K* = 7, a hosting population density

-* = l03 people/mi2 implies a feasible relocation if, and only if, atot/A* is

less than (0.1433)" l0 people/mi2 = 6.98xl0 3 people/mi2  7xlO 3 people/mi2

It is apparent from Figures 13 through 15 that for hosting-ratios larger

than 6 to 8, the critical values of population density, evacuated population and

evacuation area tend to flatten out; thus the dependence upon hosting-ratio

is weak, once the hosting-ratio reaches approximately 7. Additional insight

into the behavior of the relocation is obtained by examining how the population

after relocation is distributed among the three (mutually exclusive and
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Table 8

Critical Values of Hosting Parameters for 100% Evacuation

i*1 a F(a-) aOW F(a) F'(a) r r/F(a)

2 0.9582 0.6222 0.2418 0.4237 0.4413 0.4836 0.4413 1.0000

3 2.0113 0.7884 0.1029 0.7377 0.5620 0.3088 0.5620 1.0000

4 2.8723 0.8569 0.0610 0.9489 0.6200 0.2441 0.6199 1.0000

5 3.5863 0.8931 0.0420 1.1018 0.6546 0.2099 0.6546 1.0000

6 4.1928 0.9152 0.0314 1.2184 0.6778 0.1887 0.6778 1.0000

7 4.7186 0.9299 0.0249 1.3106 0.6945 0.1741 0.6945 1.0000

8 5.1818 0.9403 0.0204 1.3852 0.7071 0.1636 0.7071 1.0000

9 5.5948 0.9481 0.0173 1.4467 0.7169 0.1556 0.7169 1.0000

10 5.9670 0.9541 0.0149 1.4981 0.7247 0.1493 0.7247 1.0000

15 7.4090 0.9707 0.0088 1.6609 0.7476 0.1318 0.7476 1.0000

20 8.4238 0.9783 0.0062 1.7388 0.7576 0.1245 0.7576 1.0000
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Table 9

Critical Values of Hosting Parameters for 80% Evacuation

I * F(a) a F(a) F'(a) r r/F(a)

2 1.1508 0.6646 0.2006 0.5408 0.4928 0.4012 0.3942 0.8000

3 2.3153 0.8168 0.0846 0.9116 0.6107 0.2538 0.4885 0.8000

4 3.2408 0.8772 0.0501 1.1528 0.6650 0.2002 0.5320 0.8000

5 3.9967 0.9087 0.0344 1.3236 0.6967 0.1722 0.5574 0.8000

6 4.6325 0.9277 0.0258 1.4516 0.7177 0.1550 0.5741 0.8000

7 5.1795 0.9403 0.0205 1.5511 0.7325 0.1433 0.5860 0.8000

8 5.6580 0.9492 0.0169 1.6304 0.7435 0.1349 0.5948 0.8000

9 6.0825 0.9558 0.0143 1.6948 0.7520 0.1285 0.6016 0.8000

10 6.4632 0.9608 0.0124 1.7478 0.7587 0.1237 0.6070 0.8000

15 7.9224 0.9749 0.0074 1.9080 0.7774 0.1104 0.6219 0.8000

20 8.9333 0.9812 0.0053 1.9757 0.7847 0.1054 0.6277 0.8000
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collectively exhaustive) regions: evacuation region, host-region with constant

population density, host-region with constant hosting-ratio. Figures 16 and

17 present the population of these three regions as a function of hosting-ratio

for y = 1.0 and y = 0.8, respectively; for - = 1.0, the post-relocation popula-

tion of the evacuation region is, of course, zero. We see from these Figures

that the post-relocation population of the evacuation region depends weakly

(e.g., varying between 10 and 16 percent for y = 0.8) on hosting-ratio, while

the post-relocation host region population with constant population density in-

creases steadily with increasing hosting-ratio; necessarily, the remaining pop-

ulation (i.e., host region with constant hosting-ratio) decreases steadily with

increasing hosting ratio. Although these breakdowns of the total post-relocation

population are instructive, it is even more informative to determine the rank-

ordered (by population density) distributions G which are defined by the re-

located population.

It is clear that, for complete relocation with r = S, the rank-ordered

distribution G begins with that portion of the evacuation region which even after

relocation has population density greater than w*. The next portion of G has

uniform population density w*. In rank-ordering the balance of the relocated

population (i.e., the remainder of the evacuation region, plus the host region

with constant hosting-ratio) it is necessary to recognize that the smallest

population density in the evacuation region is (l-y)w*, while the smallest pop-

ulation density in the host region is K*F'(l0). tot/A*, where F'(l0) = 3.773xi0 3.
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For a given y, the result is that for sufficiently small hosting-ratio K*,

the least densely populated cells are in the host region, i.e., K*F'(lG)tot/A*

< (I-y)w*; for sufficiently large hosting-ratio, the converse holds. As

may be seen from Table 9 for y = 0.8, the transition occurs for K* between 7

and 8. Thus for 80 percent evacuation, the least densely populated portion of the

relocated population is located in the host region for K* s 7 and in the evacua-

tion region for K* > 8. In general, then, after the portion with constant pop-

ulation density w*, the rank-ordered distribution G has a portion containing

people from the evacuation region and from the host region with population

density between w* and the greater of the two minimum population densities of

these two regions. The final portion of G then contains the balance of the

residents of the region with smaller minimum population density. The precise,

quantitative characterization of the distribution G is presented in Appendix A,

which may be consulted for details and numerical examples.

The preceding discussion has considered a single region exclusively

and the relocation of the region's population within the region itself. Such

regionally self-contained relocations are an integral part of relocation on a

larger (e.g., national) scale. Therefore, the results presented above have

significant consequences for larger scale relocation. For example, we have seen

above that for 80 percent evacuation and a critical hosting-ratio of 7 then a

critical population density of 1,000 people/mi2 implies a feasible relocation

if and only if the region's atot/A* is less than 7.0xlO 3 people/mi 2 . Con-

sequently, (frpm the demographic statistics of Table 3, Ref. 1) we see

58



that relocation with these values of the hosting parameters is feasible for the

~tt/* .71 3  681 3 pepe 2
entire CONUS and for the Midwest (with Qo/A* of 5.7xi0 and 6.8x.2 people/mi

respectively), but not for the Northeast and California (with St /A* oftot
9.8xl03 and lO.2xlO 3 people/mi2 , respectively). Thus the specific relocation

described in Ref. 1 is feasible on a national scale, but has the drawback that

residents of the Northeast and California must be relocated outside their own

regions. The definition of this specific relocation has been repeated above

and can be paraphrased as calling for i) 80 percent evacuation of the locations

wherein the residential population density exceeds 1.2xlO 3 people/mi2 , ii)

a buffer region consisting of residential population with population density

between 1.2xlO people/mi and l* = l.OxlO 3 people/mi , iii) a potential host

region wherein the population density after relocation does not exceed *

and the hosting-ratio does not exceed K* = 7.

For the Northeast (with o /A* = 9.8xi0 3 people/mi2 ). the values oftot
W* = 10 people/mi2 and K* = 7 imply that a = 2.028 and a = 6.039; substitution

of these values into Equations 41 or 42 gives a maximum capacity of r = 0.4293.

However, the evacuation of residential locations with population density greater

than 1.2xlO 3 people/mi2 implies that A is 1.792 times the characteristic area A*

for the Northeast; hence, from Equation 43, the demand (i.e., the number of

evacuees) is 0.6112. Consequently, the demand exceeds the capacity by (0.6112-

0.4293) = 0.1819 times the regional population of 54.9 million people; thus

10.0 million residents of the Northeast cannot be relocated within the Northeast.

Moreover, the fraction (0.1819/0.6112) = 29.8 percent of the evacuees can't be

relocated within the Northeast.
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For California, the analogous calculations give the results that a = 2.090,

a = 6.143, r = 0.4127 while S = 0.6167 for A equal to 1.850 times the regional

characteristic area A*. Consequently, demand exceeds capacity by (0.6167-

0.4127) = 0.2040 times the regional population of 21.1 million; thus 4.3

million California residents cannot be relocated within California. Likewise,

the fraction (0.2040/0.6167) = 33.1 percent of the evacuees cannot be relocated

within California. In sum, then, we see that for both the Northeast and

California, some one-fifth of the total regional population and some one-

third of the total number of evacuees cannot be relocated within their own

region.

We now illustrate how the abstract results derived above can be

applied to define a nationwide relocation for which relocation of the Northeast

and California is self-contained. We again consider relocation with evacua-

tion fraction y = 0.8 and critical hosting-ratio K* of 7; as noted above,

hosting-ratios larger than 7 have limited payoff and cause the entire host

region to be more densely populated than some portions of the evacuation region.

Since the Northeast and California have very nearly the same residential popu-

4 2lation density iitot/A* (lO people/mi ), we treat them as a single region

with total population of 76 million and characteristic area A* of 7.5xlC3 mi2

and we consider the remainder of the nation as a second region with total pop-

ulation of 136 million and characteristic area A* of 30.6xi0 3 mi2 ; to within

roundoff, these values preserve the total population and total occupied areas
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of the regions (given in Ref. 1, Table 3, based on DCPA extrapolation of 1970

census data), while taking Aoc c = 1OA*. These values imply that itot/A* is

10,133 people/mi2 and 4,444 people/mi2 for the two regions. By demanding that

the relocation of the artificial composite region consisting of the Northeast

plus California be self-contained, we obviously guarantee that the relocation

of the actual, geographically distinct regions be individually self-contained.

From Table 9 (or Figure 13), we find that, for y = 0.8 and K* = 7, the minimum

permissible hosting population density for self-contained relocation is 0.1433

(10,133 people/mi2 ) = 1452 people/mi for the Northeast and California. Con-

sequently, a national relocation with w* = 1452 people/mi2 and K* 7 will

permit residents of the Northeast and California to be relocated in their own

regions, with complete hosting.

The national relocation thus inferred calls for i) evacuating 80

percent of the population in all locations where the residential population

density exceeds 1452 people/mi 2 , ii) having no buffer region, iii) restricting

the population density and hosting-ratio not to exceed 1452 people/mi2 and 7,

respectively, in the host region. By construction, the hosting of the North-

east and California is complete, with parameters given by Table 9. For the

region consisting of the balance of the nation, we find that the evacuation

region has a residential population of 0.5476 times the total regional popu-

lation and an area of 0.6919 times the region's characteristic area. Consequently,

the number of evacuees is 0.8 (0.5476) = 0.4380 times the regional population.

61



We find that these evacuees are accomodated in the host region with uniform

population density of 1452 people/mi2 over an area of 2.3107 times the

characteristic area of the region. In the composite rank-ordered distribu-

tion for the entire (relocated) nation, we find that 4.20 percent of the

national population has population density greater than 1452 people/mi2 and

covers an area of 3.22xi0 3 mi2 , while 67.07 percent of the national popula-

tion has population density equal to 1452 people/mi2 and covers an area of

97.92xlO 3 mi2 . The balance of the population (less than 30 percent of the

total) is contained in the evacuation region, in the constant hosting-ratio

portion of the host region for the Northeast and California, and in the

remainder of the potential host region for the rest of the nation; the last

of these are at residential population density. We call this rank-ordered

distribution FSC and plot it in Figure 18 along with the distribution FSC con
derived earlier (Ref. 1); in plotting Figure 18, we take the characteristic

area A* for the nation to be 4O 4 mi2 , i.e., the value used earlier in con-

structing Fcon' We also include in Figure 18 the distribution F = F0 corres-

ponding to residential population and the absolutely limiting distribution F = F.

corresponding to uniform population density over the entire populated area.

It is apparent from Figure 18 that requiring the relocation of the

Northeast and California to be self-contained has steepened the rank-ordered

distribution of the relocated population. Moreover, by comparison with the

irreducible limit of F = F with its uniform population density of approximately
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2
500 people/mi2 , the distributions Fcon and FSC have the bulk (greater than5con

70 percent of the national population) at population densities of approximately

.2
1,000 and 1,500 people/mi , respectively, i.e., approximately 2 and 3 times

the irreducible limit. Despite the idealizations in our derivation of the

distributions F and Fcon , it is highly plausible that no rank-ordered nation-

wide distribution flatter than something intermediate between FSC and Fcon can

be produced by any realistic relocation scheme which evacuates people to loca-

tions where at least some people already reside and which guarantees self-

contained relocation for regions of reasonable size. Moreover, the detailed

definition of any such relocation scheme must recognize the inherent capacity

vs. demand limitations explored above and will be simplified by applying the

specific abstract results derived above.

2.4 Applications and Examples

Section 2.1 above has summarized a number of fundamental results

concerning the structure of casualty prediction problems. Because of the

analytic simplicity of these results, it is straightforward to characterize

parametrically the interrelationships among the problem's ingredients. In

this subsection, rather than constructing an encyclopedic catalog of such

parametric results, we present numerical examples and analytic extensions

choosen to illustrate some basic properties of passive defense.
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We begin by exploring the relative influence of hardening and

dispersion. We consider prompt-effects casualties exclusively; equivalently,

we consider combined-effects casualties for populations whose weighted pro-

tection factor is large enough to satisfy the condition of Equation 25. We

consider airbursts exclusively, optimized for the prompt-effects hardness

p s, We have seen above that the prompt-effects hardness for the residential

population, even in "best available shelter", lies between 5 and 10 psi; we

typically take 7 psi as a representative value for the prompt-effects hardness.

The spatial arrangement of the population is represented by the distribution F,

rank-ordered by population density; we have seen above that F = F for the
0

residential population, while the most defense-optimistic F lies between FSC

and F for population relocated to places where at least some people alreadycon

reside.

Figure 19 (based on Equation 23) presents, as a function of blast-

equivalent megatons (i.e., NY2/3 ), defense-conservative estimates of the prompt-

effects hardness needed to achieve survivor fractions of 1/2 and 2/3 for the

residential and relocated (according to FSC and F con ) populations. It is

apparent that even for the relocated populations, significant hardness is

required for not unreasonable attack sizes. An alternative viewpoint is pre-

sented in Figure 20 (based on Equation 5) which plots a defense conservative

estimate of fatalities as a function of blast-equivalent megatons for a pop-

ulation with Lps,50 : 7 psi and with spatial distribution corresponding to
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F and F con  From one viewpoint (i.e., read "vertically"), Figure 20 indicates

that for a given attack size, relocation can reduce fatalities appreciably;

from another viewpoint (i.e., read "horizontally"), Figure 20 indicates that

for a given fatality level, relocation can increase the required attack size

by no more than a few thousand megatons. In Figure 21 (based on Equation 5),

we illustrate the effect of increasing hardness without relocation, by plotting

fatalities versus blast-equivalent megatons for prompt-effects hardnesses of

35 and 50 psi; Figure 21 presents both offense-conservative and defense-

conservative estimates so that the relatively small difference between the two

bounds may be recognized. The inevitable conclusion from these results is

that to achieve moderate survivor fractions for attacks against population with

several thousand blast-equivalent megatons, significant hardening is required,

even with the most defense-optimistic assumptions about relocations which

evacuate people to locations where at least some people already reside.

We now turn to exploring the influence of the delayed-effects hard-

ness, <p>. For combined (i.e., prompt-plus-delayed effects) casualties to

exceed the (exclusively prompt-effects) casualties from an all-airburst attack,

it is necessary--but by no means sufficient--that <p> be sufficiently small

that the condition of Equation 25 is not satisfied. Even for such small values

of <p>, the excess A of combined casualties (from a mix of surface and air-

bursts) over prompt casualties (from a pure airburst attack) is bounded via
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T < s0'A + ] F T~SA(49)
</F A* [I F A* (

The value of delayed-effects hardness for which Equation 25 holds as an equality

may naturally be called the breakeven value of protection factor, since this

value gives € 0 in Equation 49, while larger values give < 0 and smaller

values give * > 0. In our discussion below, we restrict attention to values

of <p> less than the breakeven value and to F : F so that the results are

applicable to residential population.

We begin by listing in Tables 10, 11, 12 (for P s,50 = 5, 7, 10 psi,

respectively) the values of the bound given by Equation 49 for Y = I t and

7, various attack sizes and values of protection factor. In interpreting these

tables, it is instructive to recall that

2 1207 5
0,A =N where N 1808 for Aps,50 = 7 psi (50)

N 2774 10

42

for A* 4xlO mi and T =2. The general behavior shown in Tables 10 through

12 is that, for a fixed value of <p> the bound increases to a maximum and then

decreases as the attack size increases. It should be noted that for <p> as

small as half the breakeven value, the bound never exceeds some ten percent of

the population. The location and magnitude of the maximum value of the bound
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Table 10

Upper Bound on Incremental Fatalities - 5 psi Hardness

2 -2 foF(.INs 5 0[1+K/A*) F(rs OA/A*)for F/Y
2 2- _ _ __Ns5 ' /A* r( Ns A/A*) 6 10 30 50

0.05 0.1406 0.2358 0.1570 0.0431 0.0113
0.1 0.2090 10.3094 0.2121 0.0605 0.0160

0.2 0.3043 0.3729 0.2666 0.0806 0.0217

0.3 0.3740 0.3937 0.2905 0.0920 0.0250

0.4 0.4296 0.3966 0.3003 0.0990 0.0272

0.5 0.4760 0.3906 0.3024 0.1032 0.0287

0.6 0.5156 0.3800 0.2999 0.1057 0.0297

0.7 0.5501 0.3669 0.2946 0.1069 0.0303

0.8 0.5806 0.3528 0.2876 0.1072 0.0306

0.9 0.6077 0.3382 0.2795 0.1068 0.0307

1.0 0.6321 0.3236 0.2707 0.1059 0.0307

1.5 0.7250 0.2571 0.2257 0.0976 0.0293

2.0 0.7872 0.2047 0.1857 0.0870 0.0269

71

NOW=-



Table 11

Upper Bound on Incremental Fatalities -7 psi Hardness

F(-Ns rl+0/A*) - F(TNs 2/A*)for 0- =
5050,A F/Y

trNs2A*F (trNs 2A/*
20, F 2/A 10 30 50 80

0.05 0.1406 0.2183 0.0777 0.0365 0.0091

0.1 0.2090 0.2884 0.1080 0.0514 0.0129

0.2 0.3043 0.3509 0.1413 0.0686 0.0175

0.3 0.3740 0.3730 0.1591 0.0786 0.0202

0.4 0.4296 0.3779 0.1690 0.0847 0.0220

0.5 0.4760 0.3739 0.1743 0.0885 0.0232

0.6 0.5156 0.3652 0.1767 0.0908 0.0240

0.7 0.5501 0.3539 0.1770 0.0920 0.0245

0.8 0.5806 0.3413 0.1759 0.0924 0.0248

0.9 0.6077 0.3281 0.1739 0.0922 0.0249

1.0 0.6321 0.3147 0.1711 0.0916 0.0249

1.5 0.7250 0.2524 0.1524 0.0850 0.0238

2.0 0.7872 0.2021 0.1320 0.0762 0M219
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Table 12

Upper Bound on Incremental Fatalities 10 psi Hardness

F(TNs 50,2[1+;]/A*)- F( Ns50,/A*) for

CN sS A 2_TN 2__A50A_/_
5 F s50,A 10 30 50 80 100 150

Ns 0A ... ..

0.05 0.1406 0.2950 0.1245 0.0715 0.0353 0.0217 0.0019

0.1 0.2090 0.3783 0.1701 0.0995 0.0497 0.0307 0.0027

0.2 0.3043 0.4415 0.2175 0.1307 0.0665 0.0413 0.0036

0.3 0.3740 0.4554 0.2401 0.1475 0.0761 0.0475 0.0042

0.4 0.4296 0.4503 0.2510 0.1570 0.0821 0.0515 0.0046

0.5 0.4760 0.4368 0.2552 0.1623 0.0858 0.0541 0.0049

0.6 0.5156 0.4196 0.2553 0.1648 0.0881 0.0557 0.0050

0.7 0.5501 0.4009 0.2528 0.1653 0.0892 0.0567 0.0051

0.8 0.5806 0.3818 0.2485 0.1646 0.0897 0.0572 0.0052

0.9 0.6077 0.3631 0.2431 0.1629 0.0895 0.0573 0.0052

1.0 0.6321 0.3449 0.2370 0.1606 0.0890 0.0571 0.0053

1.5 0.7250 0.2673 0.2025 0.1438 0.0826 0.0538 0.0051

2.0 0.7872 0.2082 0.1698 0.1252 0.0741 0.0489 0.0047
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(as a function of attack size) are given by Equations 292, 295 and 296 of

Ref. 1 and are listed in Table 13 for the cases considered in Tables 10, 11,

12. In Ref. 1, we solve the inverse problem of determining the value of <p>

needed to guarantee that the maximum value of the bound never exceeds a

specified value; the results are shown in Table 14 (reproduced from Ref. 1)

and include the breakeven value -* for <p>/(F/Y). These results clearly are

concerned with bounding the additive effect of delayed casualties. A comple-

mentary and equally informative set of results concerns bounding the multi-

plicative effect of delayed casualties. We turn now to deriving these results.

From Equations 5, 6, 11 and 49, it follows that

A< n F 50,A if <P> > *  (51)
A*F/Y 1+1+6K

where

6 (TNS501A I F- [jl+Tn)F (SOA 1 (52)

Equation 51 clearly is equivalent to the condition that the total combined-

effects casualties from any mixed attack not exceed (l+n) times the prompt-

effects casualties from a pure airburst attack. For F = F0, we write a =

and illustrate Equation 51 for n = 0.5 and Aps 50 = 5, 7, 10 psi; the results

s,50
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Table 13

Location and Magnitude of Maximum Value of Upper Bound
on Incremental Fatalities

TNs 5Attack Size, A* Maximum Value
<p> A* of

Aps. 50 ' psi F/Y € Producing Maximum Upper Bound

5 6 5.0765 0.3728 0.3969

10 2.8335 0.4872 0.3024

30 0.5905 0.7885 0.1072

50 0.1419 0.9354 0.0307

7 10 4.5219 0.3944 0.3779

30 1.1631 0.6694 0.1771

50 0.4913 0.8154 0.0924

80 0.1135 0.9474 0.0249

10 10 7.2373 0.3106 0.4555

30 2.0842 0.5508 0.2557

50 1.0536 0.6884 0.1654

80 0.4738 0.8205 0.0897

100 0.2806 0.8823 0.0573

150 0.0229 0.9887 0.0053
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Table 14

Population-Weighted Protection Factor, <FY , to Guarantee that

< 0 and a 0Amax

t*(1+c x) 1 for Lmax

&Ps,50' Psi 1/20 1/10 1/6 1/4

1 9.3 6.4 4.6 3.1 1.9
2 20.7 14.3 10.4 7.0 4.4
3 33.7 23.3 16.8 11.3 7.2
4 47.9 33.0 23.9 16.1 10.1
5 63.3 43.6 31.4 21.1 13.3
6 79.9 54.7 39.3 26.3 16.6
7 97.5 66.5 47.6 31.8 20.0
8 116 78.9 56.3 37.6 23.5
9 136 91.9 65.4 43.4 27.2

10 160 105 74.7 49.6 31.0
15 277 181 126 82.8 51.2
20 427 270 185 120 73.4
25 608 373 251 160 97.3
30 827 489 324 204 123
35 1090 621 404 251 150
40 1410 769 491 301 178
45 1790 934 585 354 207
50 2260 1120 686 410 238
55 2840 1320 795 469 270
60 3570 1560 912 530 303
65 4510 1810 1040 595 337
70 5740 2100 1170 663 372
75 7420 2420 1320 734 409
80 9840 2790 1470 808 446
90 20,100 3660 1810 965 525
100 87,700 4810 2210 1140 607
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are summarized in Table 15 and display the bound of Equation 51 as a function

of attack size. It is apparent that, for fixed values of n and APS, 50 ' the

required protection factor decreases steadily with increasing attack size.

For F = F0, it is readily seen that

> / (l+n)/x -l (53)

where the right-hand side of Equation 53 is the limit of Equation 52 as attack

size becomes vanishingly small. It follows immediately that

2) T n 50,A if > 
(54)

0  A l+[(l+n) l -l

In Table 16 we list this bound on protection factor for several values of

Aps,50 and n. If the protection factor satisfies Equation 54, it clearly

satisfies Equation 51 also; the converse, of course, is not true, as may be

seen by comparing Tables 15 and 16.

From the results presented in Tables 10 through 16, we see that the

breakeven values of protection factor are modest and, moreover, that even

less-than-breakeven values typically do not materially alter the outcome,

i.e., maximum number of fatalities. Consequently, for attacks against popu-

lation, the influence of delayed-effects hardness is generally weak, compared
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Table 15

Population-Weighted Protection Factor, <> to Guarantee that

0 < 0.5 F (TNs50,A/A*) for Various Attack Sizes and Blast Hardnesses

-j~-for Aps, 50

TNs 50, 2/A* 5 psi 7 psi 10 psi

0.05 1.0322 21.5 32.5 50.7

0.1 1.1177 20.4 30.8 48.0 L

0.2 1.2787 18.6 28.0 43.6

0.3 1.4476 17.0 25.6 39.8

0.4 1.6362 15.5 23.4 36.3

0.5 1.8556 14.1 21.2 32.9

0.6 2.1204 12.7 19.1 29.6

0.7 2.4536 11.3 17.0 26.2

0.8 2.8965 9.8 14.8 22.8

0.9 3.5352 8.3 12.4 19.2

1.0 4.5986 6.6 9.9 15.2 0

1.1 7.1400 4.4 6.6 10.1

1.15 12.8336 2.5 3.8 5.8
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Table 16

Population-Weighted Protection Factor <0> to Guarantee that
2 F/Y

A < nj F(TNs50, /A*)

for r

(psi) l+[(ln)_ _

s,50 0 0.1 0.3 0.5 0.7 0.9 1.0

1 9.3 7.1 4.7 3.4 2.6 2.1 1.9
2 20.7 15.9 10.6 7.8 6.0 4.9 4.4
3 33.7 25.9 17.2 12.6 9.8 7.9 7.2
4 47.9 36.8 24.4 17.9 13.8 11.2 10.1
5 63.3 48.5 32.1 23.5 18.2 14.6 13.3
6 79.9 60.9 40.2 29.3 22.7 18.3 16.6
7 97.5 74.1 48.8 35.5 27.4 22.0 20.0
8 116 88.0 57.7 41.9 32.3 26.0 23.5
9 136 103 67.0 48.5 37.4 30.0 27.2

10 157 118 76.6 55.4 42.6 34.2 31.0
15 278 204 130 92.7 70.9 56.6 51.2
20 427 307 190 135 102 81.2 73.4
25 608 426 258 181 136 108 97.3
30 827 564 334 231 173 136 123
35 1090 721 416 284 212 166 150
40 1410 901 506 342 253 198 178
45 1790 1110 604 403 297 231 207
50 2260 1340 709 468 342 266 238
55 2850 1600 823 537 390 302 270
60 3580 1900 945 610 440 339 303
65 4520 2250 1080 686 492 378 337
70 5750 2640 1220 766 547 418 372
75 7440 3100 1370 851 603 460 409
80 9870 3630 1530 939 662 503 446
90 20,300 4980 1890 1130 785 592 525
100 89,900 6920 2310 1340 917 687 607
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to the influence of prompt-effects hardness and dispersion. For populations

with protection factor very small compared to the breakeven value, this con-

clusion has not been demonstrated above. If, for some reason, it is necessary

to consider such populations, tighter bounds than those employed above may

yet enable the conclusion to be extended even to many such populations. In

deriving the bounds used above, we have significantly overestimated both the

size of the fallout region and the population contained therein. Both these

overestimates can be tightened up, e.g., by restricting the number of effec-

tively collocated bursts to be less than a small fixed maximum, by narrowing

the range of admissible meteorological conditions, by accounting for overlap

between prompt and delayed effects, by accounting for extensive unpopulated

areas.

The positive interpretation of our results concerning delayed-effects

hardness is that--precisely because the breakeven values of protection factor

are modest--realizable, finite levels of fallout shielding provide as much

guaranteed protection as any level of shielding can provide. Consequently,

efforts to provide the population with this assured protection have demonstrable

payoff.

The bounds derived above for protection factor depend upon, inter

alia, "universal" isodose contours and the area contained therein (cf. Ref. 1).

In Appendix B, we present numerical details, omitted from Ref. 1, to illustrate

more comprehensively the behavior of the isodose contours.
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3. CONCLUSIONS AND RECOMMENDATIONS

In this section, we summarize the major conclusions which have emerged

from this investigation and offer the corollary recommendations for future

action.

3.1 Conclusions

The principal conclusions from the results presented here are

listed below.

1. The feasibility of interrelating analytically the major ingre-

dients of damage/casualty prediction has been demonstrated by deriving tract-

able, explicit analytic representations of the interplay among the characteristics

of the attack, targets, environment and outcome.

2. Our approach for determining the effective blast protection of

a population with mixed, non-uniform protection produces stable, consistent

values of protection hardness and accurate estimates of casualties.

3. Relocation schemes which evacuate a region's population to

locations where at least some people already reside have been characterized

abstractly and analyzed parametrically; in particular, the conditions for,

and consequences of, self-contained regional relocation have been deternined.

4. It is highly unlikely that any realistic aporoach could relocate

the bulk of the nation's population at population density less than l,OCO to

,E00 people/mi2 , i.e., some 2 to 3 times the population density corresponding

to spreading the entire population uniformly over the entire populated area.
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5. To achieve moderate survivor fractions for attacks against

population with several thousand blast-equivalent megatons, significant

blast hardening is required, even with the most defense-optimistic assumptions

about relocation.

6. For attacks against population, the influence of delayed-

effects hardness is generally weak, compared to the influence of prompt-

effects hardness and dispersion.

3.2 Recommendations

In view of the results and conclusions presented above, we recommend

that

1. the demographics of residential population be analyzed to

a) explore the validity of the apparent universality of

normalized, rank-ordered population distribution for different geographic

regions,

b) provide a basis for interpreting the rank-ordered popula-

tion distribution in other commonly used formats (e.g., in terms of political

subdivisions)

2. the general analytic approach and results be extended, refined,

and applied, e.g., by considering

a) attacks more general than attacks against population,

b) tighter bounds on combined-effects casualties,

c) specific candidate relocation schemes.
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APPENDIX A

RANK-ORDERED POPULATION DISTRIBUTION FOR SELF-CONTAINED
RELOCATION WITH COMPLETE HOSTING

In this Appendix, we complete the characterization--discussed in Section

2.3 of the text--of the rank-ordered population distribution G for self-

contained (r=S) relocation with complete hosting and no buffer region. The

previous discussion has shown that G consists of four portions, with pro-

gressively smaller post-relocation population densities in each portion. We

follow the notation introduced in the text and prescribe below the end-

points of each of these four portions, i.e., we state the incremental area

and incremental population of each portion. The behavior between end-points

is readily inferred from the definition of the relocation and from the pre-

viously discussed properties of F = Fo and of the critical hosting parameters.

The cumulative distribution defined by the four portions is simply G itself.

The initial portion of G consists of that portion of the evacuation

* region which, even after relocation, has population density greater than w*.

The size of this portion is clearly given by A/A* = a1 , where

(l-y)F'(a I) = F' (a) (1)

Therefore this first portion of G has incremental area
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A(A/A*) = a1  (2)

and incremental population

A = (l-y)F(aI) (3)

The next portion of G consists of that part of the host region which

has constant population density w*. This portion has incremental area

A(A/A*) a-a (4)

and incremenval population

A F'(a)[a-a] (5)

We have seen that, after relocation, the smallest population density is

(l-y)w* in the evacuation region and is K*F(lO).2to t/A* in the host region.

Therefore, we have from Equation 48 of the text that the least densely popu-

lated (post-relocation) cells are in the host region if

(1--y) '() > P'(10) (6)
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and in the evacuation region if the reverse inequality holds. For a fixed y,

Equation 6 is satisfied for sufficiently small a and hence for sufficiently

small K*.

If Equation 6 is satisfied, then the portion of G following the constant-

population-density portion consists of the balance of the evacuation region,

plus that portion of the host region wherein the post-relocation population

density exceeds (l-y)w*. The incremental area of this portion is

A(A/A*) = a-a1+a3-a (7)

and the incremental population is

AG = (l-y)[F(a)-F(al)) + K*[F(a 3)-F(a)] (8)

where the parameter a3 is given (via Equation 48 of the text) by

PF.(a 3 ) - (I-y)F'(a) (9)

and thus defines the host-region location where the post-relocation population

density is (l-y)w*.

If Equation 6 is satisfied, then the remaining portion of G con-

sists of the balance of the host region and has incremental area
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I

&(A/A*) = 10-a3  (10)

and incremental population

AG = K*[F(IO)-F(a3)] (11)

If Equation 6 is not satisfied (i.e., if a or K* is sufficiently large),

then the portion of G following the constant-population-density portion con-

sists of the balance of the host region plus that portion of the evacuation

region wherein the post-relocation population density exceeds K*F'(lO)otot/A*.

The incremental area of this portion is

A(A/A*) = a2-a1 + 10- (12)

and the incremental population is

AG = (1-y)[F(a2 )-F(al)] + K*[F(l0)-F( )] (13)

where the parameter a2 is given by

(l-y)FI(a 2 ) = K*F'(10) (14)

and thus defines the evacuation-region location where the post-relocation

population density is K*F'(10)ntot/A*.
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If Equation 6 is not satisfied, then the remaining portion of G consists

of the balance of the evacuation region and has incremental area

A(A/A*) = a-a2  (15)

and incremental population

AG = (1-y)[F(a)-F(a2 )] (16)

In sum, then, the distribution G has the cumulative behavior determined

by the four constituent portions. Thus the first portion (from Equation 2 for

A and from Equation 3 for G) ends with

A/A* a1  G = (l-y)F(a I ) (17)

while the second portion (from Equations 2 and 4 for A and from Equations 3

and 5 for G) ends with

A/A* = al+a-a G = (l-y)F(a l ) + F'(a)[a-a] (18)

If K* is sufficiently small that Equation 6 is satisfied, then the third

portion (from Equations 2, 4 and 7 for A and from Equations 3, 5 and 8 for G)

ends with
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A/A* : a3 G = (1-y)F(a) + F'(a)[a-]a)+K*[F(a 3)-F(a)] (19)

while the fourth portion (from Equations 2, 4, 7 and 10 for A and from

Equations 3, 5, 8 and 11 for G) ends with

A/A* = 10 G = (l-y)F(a) + F'(a)[a-a] + K*[F(l0)-F(a)] (20)

From Equations 41 and 43 of the text, we see that for the conditions considered

here (i.e., r=S, A=A) the expression for G(10) given by Equation 20 is in fact

F(10), as it should be.

If K* is sufficiently large that Equation 6 is not satisfied, then the

third portion (from Equations 2, 4 and 12 for A and from Equations 3, 5 and

13 for G) ends with

A/A* = l0-(a-a 2) G = (l-y)F(a2) + F'(a)['-a] + K*[F(10)-F(a)] (21)

while the fourth portion (from Equations 2, 4, 12 and 15 for A and from Equations

3, 5, 13 and 16 for G) ends with

A/A* - 10 G = (l-y)F(a) + F'(a)[a-a + K*[F(l0)-F(')] (22)

Af before, G(O) as given by Equation 22 is, in fact, F(10).
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For y = I (i.e., for 100 percent evacuation) the distribution G is de-

generate and is given simply as

[F'( L 0 < a-a

A* (23)
A A

F'(a) -a) ]+ K*[F(a + ) - F( )] a-a <A- < 10-a

where the parameters a, a, etc. are tabulated in Table 8 as a function of K*.

We now illustrate the behavior of G for less than complete (y=l) evacuation.

Specifically, we consider the case y = 0.8, corresponding to 80 percent evacua-

tion. For y = 0.8, Equation 6 is satisfied for a less than 5.3777 and hence,

from Table 9, for K* less than a value intermediate between 7 and 8. In Table

A.l, we list the values of al, a2, a3 determined, for y = 0.8, from Equations

1, 14, 9 respectively. These values together with the values tabulated for

a, a, etc. in Table 9, suffice to determine the distribution G. In Table A.2

we summarize, for y = 0.8 and various values of K*, the location of, and the

magnitude of G at, the end of the four constituent regions.

8
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Table A-1

The Parameters al. a2 , a 3 for 80 Percent Evacuation

KalF(a 1) a2  F(a 2 ) a3  F(a 3 )

2 1.1508 0.0321 0.1082 3.6789 0.8969

3 2.3153 0.0850 0.1907 5.6484 0.9490

4 3.2408 0.1337 0.2453 7.0410 0.9673

5 3.9967 0.1747 0'.2833 8.1188 0.9763

6 4.6325 0.2088 0.3111 8.9966 0.9815

37 5.1795 0.2372 0.3323 9.7354 0.9849

8 5.6580 0.2610 0.3489 1.4846 0.7227

9 6.0825 0.2811 0.3621 1.3404 0.6996

10 6.4632 0.2981 0.3728 1.2185 0.6778

15 7.9224 0.3521 0.4044 0.8122 0.5841

20 8.9333 0.3761 0.4173 0.5833 0.5094
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Table A.2

The Distribution G for 80 Percent Evacuation

K*A/A* G(A/A*) A(A/A*) &

2 0.0321 0.0217 0.0321 0.0217
0.6421 0.2664 0.6100 0.2447
3.6789 0.8078 3.0368 0.5414
10.0 0.9860 6.3211 0.1781

3 0.0850 0.0381 0.0850 0.0381
1.4887 0.3944 1.4037 0.3563
5.6484 0.8751 4.1597 0.4807
10.0 0.9860 4.3516 0.1108

4 0.1337 0.0491 0.1337 0.0491
2.2217 0.4671 2.0880 0.4180
7.0410 0.9112 4.8193 0.4441
10.0 0.860 2.9590 0.0747

5 0.1747 0.0567 0.1747 0.0567
2.8478 0.5171 2.6731 0.4604
8.1188 0.9376 5.2710 0.4205
10.0 0.9860 1.8812 0.0485

6 0.2088 0.0622 0.2088 0.0622
3.3897 0.5551 3.1809 0.4929
8.9966 0.9593 5.6069 0.4042
10.0 0.9860 1.0034 0.0267

7 0.2372 0.0665 0.2372 0.0665
3.8656 0.5863 3.6284 0.5198
9.7354 0.9787 5.8698 0.3924
10.0 0.9860 0.2646 0.0073
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Table A.2, continued

A/A* G(A/A*) A(A/A*) AG

8 0.2610 0.0698 0.2610 0.0698
4.2886 0.6129 4.0276 0.5431
9.8542 0.9818 5.5656 0.3689
10.0 0.9860 0.1458 0.0042

9 0.2811 0.0724 0.2811 0.0724
4.6688 0.6364 4.3877 0.5640
9.6456 0.9755 4.9768 0.3391
10.0 0.9860 0.3544 0.0105

10 0.2981 0.0746 0.2981 0.0746
5.0135 0.6577 4.7154 0.5831
9.4707 0.9698 4.4572 0.3121
10.0 0.9860 0.5293 0.0162

15 0.3521 0.0809 0.3521 0.0809
6.3665 0.7451 6.0144 0.6642
8.9042 0.9474 2.5377 0.2023
10.0 0-9860 1.0958 0.0387

20 0.3761 0.0835 0.3761 0.0835
7.3337 0.8171 6.9576 0.7336
8.6076 0.9310 1.2739 0.1139
10.0 0.9860 1.3924 0.0551
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APPENDIX B

UNIVERSAL ISODOSE CONTOURS

In this Appendix, we present numerical details, omitted from Ref. 1,

to illustrate more comprehensively the behavior of "universal" isodose con-

tours as functions of downwind location, x, and crosswind location, y.

We have shown in Ref. 1 that, in the far-field approximation to WSEG-1O

fallout phenomenology, it is possible to characterize each isodose contour

in purely geometric terms by specifying the distant location, x, at which

the isodose contour crosses the downwind axis. The crosswind extent, Yisodose'

of the isodose contour is given in dimensionless form as

^ -l

V Yisodose 21/2 x x ( - ) c log(4) >/2
(HS c/W)x X WT x x

where

c = 1.382 
(2)

Equation 1 presents the isodose contour's dimensionless crosswind extent, v,

as a function of the parameter x/WT and of the normalized location, x/x. Table B.l

lists v as a function of x/x for several values of x/WT. For some of these

values of x/WT, Figure B.l (from Ref. 1) presents the corresponding plot of

v as a function of x/x.
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Table B.1

Normalized Isodose Contours for Several Values of x/WT and Normalized Distance

v, for x/WT =X

x 0.1 0.2 0.4 0.6 0.8 1.0

0.99 0.1708 0.1765 0.1873 0.1975 0.2071 0.2164

.0.95 0.3701 0.3821 ,0.4050 0.4267 0.4474 0.4671

0.9 0.5021 0.5180 0.5483 0.5771 0.6046 0.6308

0.8 0.6483 0.6678 0.7051 0.7405 0.7743 0.8067

0.7 0.7159 0.7361 0.7750 0.8121 0.8475 0.8815

0.6 0.7329 0.7523 0.7896 0.8253 0.8595 0.8924

0.5 0.7099 0.7273 0.7609 0.7931 0.8240 0.8538

0.4 0.6515 0.6660 0.6943 0.7214 0.7475 0.7728

0.3 0.5587 0.5698 0.5915 0.6125 0.6327 0.6523

0.2 0.4293 0.4367 0.4512 0.4651 0.4787 0.4919

0.1 0.2558 0.2593 0.2662 0.2728 0.2794 0.2857

0.05 0.1455 0.1471 0.1503 0.1535 0.1565 0.1595

0.01 0.0360 0.0362 0.0368 0.0373 0.0378 0.0384
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Table B.1, continued

x v, for x/WIT= _ ___

x 1.0 2.0 4.0 6.0 8.0 10.0

0.99 0.2164 0.2577 0.3250 0.3806 0.4290 0.4725

0.95 0.4671 0.5554 0.6993 0.8182 0.9219 1.0151

0.9 0.6308 0.7483 0.9402 1.0990 1.2377 1.3623

0.8 0.8067 0.9522 1.1911 1.3895 1.5629 1.7189

0.7 0.8815 1.0349 1.2880 1.4990 1.6838 1.8502

0.6 0.8924 1.0413 1.2885 1.4954 1.6770 1.8407

0.5 0.8538 0.9894 1.2161 1.4068 1.5745 1.7260

0.4 0.7728 0.8884 1.0832 1.2479 1.3933 1.5249

0.3 0.6523 0.7426 0.8964 1.0274 1.1435 1.2488

0.2 0.4919 0.5531 0.6587 0.7496 0.8306 0.9044

0.1 0.2587 0.3157 0.3683 0.4143 0.4557 0.4936

0.05 0.1595 0.1738 0.1992 0.2218 0.2423 0.2612

0.01 0.0384 0.0409 0.0454 0.0496 0.0534 0.0570
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For a given value of x/WT, v increases from 0 to a maximum, Vmax ' and

then decreases to 0 as x/x increases from 0 to u* (i.e., the value of x/x

yielding vm) to 1. The downwind location, x/x = u*, and magnitude, Vmax ,max mx

of the maximum crosswind extent of the universal isodose contour are given by

x - (c/3)(1+2 log u*) (3)
WT 2 u*

1/3

vmax u* c + u* (4)

It follows immediately from Equations 3 and 4 that as x/WT increases, then u*

increases from e-I/2 = 0.6065 to 2/3 = 0.6667 and vmax increases monotonically

and unboundedly from (c/e)I/2 = 0.7130. In Table B.2, we list u* and vmax

for several values of x/WT.

To prepare isodose contours in the more conventional format (i.e., as

loci of points in the x-y plane), it suffices to recognize that

x _x x (5)WT WT ^

Yisodose _ (CHSc/W) 2T v (6)WT (OH vWT6

Table B.3 lists values of Yisodose/WT as a function of x/1.'T for oHSc/.1 = 0.1

and for several values of x/WT. Figures B.2 and B.3 (from Ref. 1) present the
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Table B.2

Downwind Location and Magnitude of Maximum Crosswind
Extent of Universal Isodose Contour

x uTl Vmax

102 0.6069 0.7151

0.1 0.6103 0.7331

0.2 0.6136 0.7526

0.4 0.6192 0.7904

0.6 0.6237 0.8266

0.8 0.6275 0.8613

1.0 0.6307 0.8947

2.0 0.6411 1.0465

4.0 0.6505 1.2985

6.0 0.6549 1.5093

8.0 0.6574 1.6941

10.0 0.6590 1.8607

102 0.6658 5.4889

1030.6666 17.2277
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Table 8.3

Universal Isodose Contours for allSCIW=0.l and Several Values of x/WT

xIW'T=0.l x/WT=O.2 x/WT=O.4 I XIWT=0.6

x/WT y/WT x/WT y/WT x/WT y/WT x/WT y/WT

0.099 0.0017 0.198 0.0035 0.396 0.0075 0.594 0.0118

0.095 0.0037 0.19 0.0076 0.38 0.0162 0.57 0.0256

0.09 0.0050 0.18 0.0104 0.36 0.0219 0.54 0.0346

0.08 0.0065 0.16 0 .0134 0.32 0.0282 0.48 0.0444

0.07 0.0072 0.14 0.0147 0.28 0.0310 0.42 0.0487

0.06 0.0073 0.12 0.0150 0.24 0.0316 0.36 0.0495

0.05 0.0071 0.10 0.0145 0.20 0.0304 0.30 0.0476

0.04 0.0065 0.08 0.0133 0.16 0.0278 0.24 0.0433

0.03 0.0056 0.06 0.0114 0.12 0.0237 0.18 0.0367

0.02 0.0043 0.04 0.0087 0.08 0.0180 0.12 0.0279

0.01 0.0026 0.02 0.0052 0.04 0.0106 0.06 0.0164

0.005 0.0015 0.01 0.0029 0.02 0.0060 0.03 0.0092

0.001 0.0004 0.002 0.0007 0.004 0.0015 0.006 0.0022
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Table B.3, continued

x/WT=0.8 x/WT=1.0 x/WT=2.0 x/WT=4.0

x/WT y/WT x/WT y/WT x/WT y/WT x/WT y/WT

0.792 0.0166 0.99 0.0216 1.98 0.0515 3.96 0.1300

0.76 0.0358 0.95 0.0467 1.90 0.1111 3.80 0.2797

0.72 0.0484 0.9 0.0631 1.80 0.1497 3.60 0.3761

0.64 0.0619 0.8 0.0807 1.60 0.1904 3.20 0.4764

0.56 0.0678 0.7 0.0882 1.40 0.2070 2.80 0.5152

0.48 0.0688 0.6 0.0892 1.20 0.2083 2.40 0.5154

0.40 0.0659 0.5 0.0854 1.00 0.1979 2.00 0.4865

0.32 0.0598 0.4 0.0773 0.80 0.1777 1.60 0.4333

0.24 0.0506 0.3 0.0652 0.60 0.1485 1.20 0.3586

0.16 0.0383 0.2 0.0492 0.40 0.1106 0.80 0.2635

0.08 0.0223 0.1 0.0286 0.20 0.0631 0.40 0.1473

0.04 0.0125 0.05 0.0160 0.10 0.0348 0.20 0.0797

0.008 0.0030 0.01 0.0038 0.02 0.0082 0.04 0.0182
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Table B.3, concluded

x/WT=6.0 x/WT=8.0 x/WT=IO.0

x/WT y/WT x/WT y/WT x/WT y/WT

5.94 0.2283 7.92 0.3432 9.9 0.4725

5.70 0.4909 7.60 0.7375 9.5 1.0151

5.40 0.6594 7.210 0.9902 9.0 1.3623

4.80 0.8337 6.40 1.2503 8.0 1.7189

4.20 0.8994 5.60 1.3470 7.0 1.8502

3.60 0.8973 4.80 1.3416 6.0 1.8407

3.00 0.8441 4.00 1.2596 5.0 1.7260

2.40 0.7487 3.20 1.1146 4.0 1.5249

1.80 0.6164 2.40 0.9148 3.0 1.2488

1.20 0.4498 1.60 0.6645 2.0 0.9044

0.60 0.2486 0.80 0.3645 1.0 0.4936

0.30 0.1331 0.40 0.1938 0.5 0.2612

0.06 0.0298 0.08 0.0428 0.1 0.0570
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corresponding plots. To obtain results for any other value of OHSc/W, it

suffices to multiply the scale of the crosswind axis by (OHSc/W)/O.l. It

is clear that the downwind location and magnitude of the maximum crosswind

extent of each isodose contour are given by

X = X (7)

Y= (OHSc/W) x (8) 
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